On the Cauchy problem for weakly hyperbolic systems
نویسندگان
چکیده
منابع مشابه
On the Cauchy Problem for Nonlinear Hyperbolic Systems
This paper consider various examples of metrics which are contractive w.r.t. an evolution semigroup, and discusses the possibility of an abstract O.D.E. theory on metric spaces, with applications to hyperbolic systems. In particular, using a recently introduced deenition of Viscosity Solutions, it is shown how a strictly hyperbolic system of conservation laws can be reformulated as an abstract ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولPrecise Finite Speed and Uniqueness in the Cauchy Problem for Symmetrizable Hyperbolic Systems
Precise finite speed, in the sense of that the domain of influence is a subset of the union of influence curves through the support of the initial data is proved for hyperbolic systems symmetrized by pseudodifferential operators in the spatial variables. From this, uniqueness in the Cauchy problem at spacelike hypersurfaces is derived by a Hölmgren style duality argument. Sharp finite speed is ...
متن کاملFactoring Weakly Compact Operators and the Inhomogeneous Cauchy Problem
By using the technique of factoring weakly compact operators through reflexive Banach spaces we prove that a class of ordinary differential equations with Lipschitz continuous perturbations has a strong solution when the problem is governed by a closed linear operator generating a strongly continuous semigroup of compact operators.
متن کاملEnergy Estimates for Weakly Hyperbolic Systems of the First Order
For a class of weakly hyperbolic systems of the form Dt − A(t, x,Dx), where A(t, x, Dx) is a first-order pseudodifferential operator whose principal part degenerates like t∗ at time t = 0, for some integer l∗ ≥ 1, well-posedness of the Cauchy problem is proved in an adapted scale of Sobolev spaces. In addition, an upper bound for the loss of regularity that occurs when passing from the Cauchy d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 1976
ISSN: 0034-5318
DOI: 10.2977/prims/1195190726